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The second law of thermodynamics has two distinct aspects to its foundations. 
The first concerns the question of why entropy goes up in the future, and the 
second, of why it goes down in the past. Statistical physicists tend to be more 
concerned with the first question and with careful considerations of definition 
and mathematical detail. The second question is of quite a different nature; it 
leads into areas of cosmology and quantum gravity, where the mathematical 
and physical issues are ill understood. 
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TWO ASPECTS OF THE SECOND LAW 

The very brief remarks that I am making here can in no way reflect the 
magnitude of the scientific and mathematical indebtedness that I feel 
towards my brother Oliver Penrose. From a very young age, he provided 
me both with inspiration and with a depth of realization that in mathe- 
matics and in physics there was to be found excitement, mystery, and much 
logical structure of profound beauty. Though at that early stage in life I 
had imagined that I would become a doctor, there was always that older 
brother whom I greatly looked up to, and from whom I gained a profound 
appreciation that in the "hard sciences" also there was something to strive 
for that is deeply worthwhile. Only much later, after my early flirtations 
with pure mathematics, did I finally turn to the study of the physical world 
in any serious way. The many conversations with Oliver, over a great 
number of influential years, have helped me to formulate my viewpoints 
and sharpen my critical sense. 

Oliver's own interests took him in the direction of statistical physics, 
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where his profound contributions are acknowledged world-wide. Although 
I had picked up, from Oliver, some of the underlying concepts, statistical 
physics is an area in which I have never myself felt comfortable; so it was 
with some considerable awkwardness and uncertainty that I have found 
myself driven--as a logical consequence of my own interests in the struc- 
ture of black holes and cosmological space-time singularities--to enter into 
the discussion of time asymmetry and the origin and nature of the second 
law of thermodynamics. It seems that coming at this subject as an outsider 
with an unconventional point of view, I have found myself to be intrigued 
by issues that appear to be different from those that have traditionally been 
the concern of most statistical physicists. Sometimes such people would 
address me with some puzzlement at the fact that my interests in this area 
would be so much concentrated on matters of cosmology and quantum 
gravity, while I would seem almost totally to ignore that great body of 
literature on such matters as Boltzmann's H theorem, microcanonical 
ensembles, equilibrium fluctuations, and the like. Statistical physicists are 
themselves not usually particularly interested (professionally) in cosmology 
- - so  I might be informed--and certainly not in quantum gravity. Those 
subjects, it would appear, have almost no relevance to the matters of 
primary concern to a statistical physicist. On the issues that might more 
directly be their concern, my own silence would, more often than not, 
merely reflect my own considerable lack of expertise; nevertheless I feel that 
there is a separate question of relevance here, and it is this that I shall try 
to address in this short note. 

As I see it, there is at least one important difference in motivation 
between my own interests and those of the main body of statistical 
physicists. Most conventional physicists are concerned with predicting the 
future, rather than retrodicting the past. To them, if the second law of 
thermodynamics holds any mystery--or  even if it merely falls marginally 
short of being rigorously understood--what  would need to be understood 
would be: why it is that the entropy in an isolated system goes up in the 
future? To me, the mystery is a different one: why does the entropy go 
down in the past? 

Superficially, these might seem to be the same question. But on reflec- 
tion, one sees that the two questions are completely different. We may 
recall that Boltzmann himselt ~ll had promoted the idea that the existence 
of a second law of thermodynamics at our present epoch might be the 
result of our universe--or at least of our local part of the universe--having 
encountered an enormous fluctuation of low entropy from which our 
present increasing entropy would represent a natural proceeding toward 
thermal equilibrium. On this view, at the times that immediately precede 
that fluctuation, the time direction of entropy increase would have been 
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opposite to what we experience now. In this picture of things, the entropy 
of the universe would go up into the past (that is, in the past direction, to 
the past of this f luctuation)just  as it goes up, now, in the time direction 
that we now refer to as the "future." All the reasoning that leads us to 
expect that the entropy of our present universe (or universe neighborhood) 
is increasing into the future, away from this fluctuation, would apply 
equally well in the past direction, to the past of this fluctuation. In such a 
scheme, the second law would not have held in the past, with respect to the 
time direction that we use now. However, all the cosmological evidence 
points overwhelmingly to the conclusion that there has been no such tur- 
naround in the direction of the second law--a t  least so far as our direct 
(and indirect) observations of the early universe imply. If our second law 
is the result of an enormous fluctuation, then it must have been a fluctua- 
tion of much greater enormity and at a much earlier time than Boltzmann 
could have imagined. Indeed the fluctuation would have to have been so 
enormous that no explanation of the "anthropic" kind--whereby the very 
existence of intelligent life provides the reason for the low-entropy "oasis" 
from which we need to have emerged (cf. ref. 2, p. 354; also ref. 3, 
p. 589)--comes close to providing an explanation. Thus, the fact that the 
entropy continues to go down in the past, the farther into the past we 
probe, provides us with a mystery of a quite different order from the more 
familiar problem of showing why it is that the entropy has a tendency to 
increase in the future. 

These two aspects of the second law, it seems to me, have a quite 
distinct conceptual status, and the types of mathematical and physical 
argument that are brought to bear on them appear to be very different. For 
those arguments that are aimed at showing why the entropy goes up in the 
future--  or, at least, usually goes up in the future--one must have a deep 
understanding of the meaning of the term "entropy" and of the precise 
mathematical formulations of the various concepts involved. One must 
also be explicit about the assumptions that need to be invoked in the 
mathematical derivations. (See Oliver's classic text ~4~ for a rigorous and 
comprehensive treatment of these issues.) To ensure that there is a general 
entropy increase into the future, one must assume the absence of prior 
correlations in the details of the initial particle motions. It seems 
"reasonable" to make such an assumption, since within any chosen set of 
macroscopic parameters, those initial states for which such correlations are 
essentially absent would form the vast majority. Nevertheless, one must 
expect that correlations of this nature would be present, in time-reversed 
sense, after any significant increase in entropy, so one cannot assume, just 
on general grounds, that the absence of correlations is an all-embracing 
feature of our inverse. In an important paper, Oliver, together with Ian 
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Percival, ~5) set down an explicit assumption that provides a past/future 
distinction, which they referred to as the law of conditional independence. 
According to this assumption, the absence of such correlations would be a 
feature of the remote past, so that deductions concerning the general 
increase in entropy in the future can then be made (contrast ref. 3, p.589). 

My own interest in the second law, on the other hand, has been con- 
cerned with the reverse question of why the entropy goes down in the past. 
Here, the effect is gross rather than subtle. Delicate issues concerning the 
definition of entropy, the nature of equilibrium and of fluctuations away 
from equilibrium, etc.--though they are certainly of great importance 
when one is concerned with details of the future behavior of an isolated 
system--appear  to lie far from the gross type of explanation that would 
seem to be needed for an understanding of this particular aspect of the 
second law. My own attempts at an explanation have been described in a 
series of papers over the years, ~6' 3)where I have been promoting a very dif- 
ferent kind of criterion for the initial state of the universe from the law of 
conditional independence of Penrose and Percival, which I have referred to 
as the Weft curvature hypothesis. It has very little explicit connection with 
the notion of entropy, as such. Even my earlier attempts at finding a 
general definition of "gravitational entropy" have had to be abandoned- -  
or at least set aside, for the time being. It is only the Bekenstein-Hawking 
formula for black-hole entropy which has so far found any specific role 
to play in my deliberations, namely to provide an estimate for the total 
entropy of a closed universe. (One finds, by use of this formula, that the 
entropy in a generic closed universe with baryon number 1080 is about 
10123  , in natural units.) 

The role of the Weyl curvature hypothesis is to set up an initial state 
for the universe which is very special in a particular way - - a  way that is 
consistent with what we know about cosmology and astronomy. That the 
entropy of the early universe is thereby constrained to be extremely 
low--incomparison with what it would otherwise have been (recall the 
figure 10123)--is, in a sense, incidental to this. But the hypothesis does 
indeed provide a picuture in which the entropy must go down in the past. 
On the other hand, it provides no guarantee that the entropy will continue 
to go up in the future. Perhaps some kind of combination of the law of 
conditional independence with the Weyl curvature hypothesis would be 
needed if an understanding of the second law of thermodynamics, in both 
these aspects, is to be obtained (cf. also ref. 3, pp. 633-634). 

It may be remarked that, although the Weyl curvature hypothesis may 
be thought of as a "blunt instrument" in its relation to thermodynamics, it 
has played a clear-cut role in some precise mathematical theorems of 
importance to cosmology. In particular, Newman ~7~ has shown, using a 
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refined form of the Weyl curvature hypothesis due to K. P. Tod--whereby 
it is assumed that the initial big-bang singularity is conformally regular as 
a hypersurface--that one can deduce that, with appropriate equations of 
state, the early universe must be of Friedmann-Robertson-Walker type 
(as, indeed, it is observed closely to be). 

The other main role of the Weyl curvature hypothesis lies in highly 
speculative matters to do with quantum gravity and with the measurement 
problem in quantum mechanics. My own interests have taken me in the 
direction of these particular questions, ~8~ but it will be a long while before 
the mathematical status of any of these considerations comes close to that 
enjoyed within the subject of statistical physics. 
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